Predictive Value of the sFlt-1:PlGF Ratio in Women with Suspected Preeclampsia

Harald Zeisler, M.D., Elisa Llurba, M.D., Ph.D., Frederic Chantraine, M.D., Ph.D., Manu Vatish, M.B., Ch.B., D.Phil., Anne Cathrine Staff, M.D., Ph.D., Maria Sennström, M.D., Ph.D., Mats Olovsson, M.D., Ph.D., Shaun P. Brennecke, M.B., B.S., D.Phil., Holger Stepan, M.D., Deirdre Allegranza, B.A., Peter Dilba, M.Sc., Maria Schoedl, Ph.D., Martin Hund, Ph.D., and Stefan Verlohren, M.D., Ph.D.

BACKGROUND
The ratio of soluble fms-like tyrosine kinase 1 (sFlt-1) to placental growth factor (PlGF) is elevated in pregnant women before the clinical onset of preeclampsia, but its predictive value in women with suspected preeclampsia is unclear.

METHODS
We performed a prospective, multicenter, observational study to derive and validate a ratio of serum sFlt-1 to PlGF that would be predictive of the absence or presence of preeclampsia in the short term in women with singleton pregnancies in whom preeclampsia was suspected (24 weeks 0 days to 36 weeks 6 days of gestation). Primary objectives were to assess whether low sFlt-1:PlGF ratios (at or below a derived cutoff) predict the absence of preeclampsia within 1 week after the first visit and whether high ratios (above the cutoff) predict the presence of preeclampsia within 4 weeks.

RESULTS
In the development cohort (500 women), we identified an sFlt-1:PlGF ratio cutoff of 38 as having important predictive value. In a subsequent validation study among an additional 550 women, an sFlt-1:PlGF ratio of 38 or lower had a negative predictive value (i.e., no preeclampsia in the subsequent week) of 99.3% (95% confidence interval [CI], 97.9 to 99.9), with 80.0% sensitivity (95% CI, 51.9 to 95.7) and 78.3% specificity (95% CI, 74.6 to 81.7). The positive predictive value of an sFlt-1:PlGF ratio above 38 for a diagnosis of preeclampsia within 4 weeks was 36.7% (95% CI, 28.4 to 45.7), with 66.2% sensitivity (95% CI, 54.0 to 77.0) and 83.1% specificity (95% CI, 79.4 to 86.3).

CONCLUSIONS
An sFlt-1:PlGF ratio of 38 or lower can be used to predict the short-term absence of preeclampsia in women in whom the syndrome is suspected clinically. (Funded by Roche Diagnostics.)
Preeclampsia, a heterogeneous, multisystem disorder defined by the new onset of hypertension and proteinuria after 20 weeks of gestation, affects 2 to 5% of pregnancies worldwide. Preeclampsia is associated with high risks of iatrogenic preterm delivery, intrapartum hypoxia, placental growth restriction, placental abruption, and perinatal mortality, along with maternal morbidity and mortality.

The cause of preeclampsia is incompletely understood, but the disorder is thought to be due to placental malperfusion resulting from abnormal remodeling of maternal spiral arteries. In preeclampsia, circulating maternal serum levels of soluble fms-like tyrosine kinase 1 (sFlt-1) are increased, and placental growth factor (PIGF) levels are decreased. An antagonist of PIGF and vascular endothelial growth factor, sFlt-1 causes vasoconstriction and endothelial damage that may lead to fetal growth restriction and preeclampsia. A high ratio of sFlt-1 to PIGF is associated with an increased risk of preeclampsia and may be a better predictor of risk than either biomarker alone.

Proteinuria and elevated blood pressure are diagnostic criteria for preeclampsia, but the clinical presentation is variable. The Elecsys immunoassays for sFlt-1 and PIGF (Roche Diagnostics) have received Conformité Européenne (CE) marking for use as in vitro medical devices. The sFlt-1:PIGF ratio has been approved as a diagnostic aid for preeclampsia in conjunction with other clinical findings.

There is a need for a reliable predictor of preeclampsia (particularly its absence) in the short term in women with suspected preeclampsia. Women with suggestive symptoms or signs are often hospitalized until preeclampsia and related adverse outcomes have been ruled out. Others who require hospitalization may be overlooked. Although no preventive or therapeutic strategy is yet available, with the exception of low-dose acetylsalicylic acid, which has a moderate preventive effect in high-risk pregnancies after the first trimester, clinical experience suggests that early detection and monitoring are beneficial.

PROGNOSIS (Prediction of Short-Term Outcome in Pregnant Women with Suspected Preeclampsia Study) was designed to investigate the value of using the sFlt-1:PIGF ratio for the prediction of the presence or absence of preeclampsia in the short term.
results during the study (i.e., results could not influence clinical decisions). Assessments were made at visit 1 (baseline visit); visit 2 (7 to 9 days after visit 1); visits 3, 4, and 5 (7±2 days after the previous visit); at delivery; and at the postpartum visit. Information collected at these visits included an updated medical history, clinical assessments, laboratory testing and determination of the sFlt-1:PlGF ratio (visits 1 through 5), and documentation of maternal and neonatal outcomes.

STUDY OBJECTIVES

The primary objectives were, first, to determine whether sFlt-1:PlGF ratios that were at or below a defined cutoff point predicted the absence of preeclampsia, eclampsia, and the HELLP syndrome for 1 week after the baseline visit (rule out) and, second, to determine whether sFlt-1:PlGF ratios that were above a defined cutoff point predicted a diagnosis of preeclampsia, eclampsia, or the HELLP syndrome within 4 weeks after the baseline visit (rule in). Secondary objectives included determination of whether sFlt-1:PlGF ratios at or below a defined cutoff point were associated with the absence of preeclampsia-related maternal and fetal adverse outcomes within 1 week and whether values above the cutoff point were associated with the presence of such adverse outcomes within 4 weeks.

We performed post hoc exploratory analyses of associations between sFlt-1:PlGF ratios and combined outcomes (preeclampsia, eclampsia, or the HELLP syndrome and maternal or fetal adverse outcomes) within 1 week and 4 weeks after the baseline visit. An additional post hoc analysis compared the value of clinical data alone (the results of a dipstick test for proteinuria plus blood-pressure measurement) with the value of clinical data plus the sFlt-1:PlGF ratio for predicting preeclampsia.

DIAGNOSTIC CRITERIA

Diagnostic criteria for each preeclampsia-related disorder were based on international guidelines25-30 (Table S3 in the Supplementary Appendix). Diagnostic criteria for preeclampsia were a new onset of both hypertension (systolic blood pressure of 140 mm Hg or higher, diastolic blood pressure of 90 mm Hg or higher, or both) and proteinuria (2+ protein or greater on dipstick urinalysis, ≥300 mg of protein per 24-hour urine collection, ≥30 mg of protein per deciliter in a spot urine sample, or a ratio of protein to creatinine of ≥30 mg per millimole) after 20 weeks of gestation. Only cases that met these prespecified criteria were included in the analyses. (Cases of preeclampsia diagnosed according to local criteria that did not meet the criteria defined in the protocol were excluded.) Preeclampsia status was classified as no preeclampsia; suspected preeclampsia (defined according to the criteria for inclusion in the study but not applicable at delivery or post partum); preeclampsia; and severe preeclampsia, eclampsia, the HELLP syndrome, or a combination of these disorders. Neurologic symptoms (headache or visual disturbances), epigastric pain, severe edema, and oliguria were recorded.

Protocol-defined maternal adverse outcomes other than preeclampsia, eclampsia, or the HELLP syndrome were death, pulmonary edema, acute renal failure, cerebral hemorrhage, cerebral thrombosis, and disseminated intravascular coagula-
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Development Cohort</th>
<th>Validation Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Preeclampsia, Eclampsia, or HELLP Syndrome (N = 399)</td>
<td>No Preeclampsia, Eclampsia, or HELLP Syndrome (N = 101)</td>
</tr>
<tr>
<td></td>
<td>Preeclampsia, Eclampsia, or HELLP Syndrome (N = 101)</td>
<td>Preeclampsia, Eclampsia, or HELLP Syndrome (N = 98)</td>
</tr>
<tr>
<td>Median wk of gestation (IQR)</td>
<td>31.6 (27.3–34.7)</td>
<td>32.1 (27.7–34.4)</td>
</tr>
<tr>
<td>Median BMI before pregnancy (IQR)†</td>
<td>27.0 (22.3–32.0)</td>
<td>24.9 (21.5–31.2)</td>
</tr>
<tr>
<td>Median blood pressure (IQR) — mm Hg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>128 (115–140)</td>
<td>137 (130–149)‡</td>
</tr>
<tr>
<td>Diastolic</td>
<td>80 (70–90)</td>
<td>85 (80–94)‡</td>
</tr>
<tr>
<td>Smoking — no. (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Past</td>
<td>71 (17.8)</td>
<td>22 (21.8)</td>
</tr>
<tr>
<td>Current</td>
<td>60 (15.0)</td>
<td>13 (12.9)</td>
</tr>
<tr>
<td>Race — no. (%)§</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>14 (3.5)</td>
<td>7 (6.9)</td>
</tr>
<tr>
<td>Black</td>
<td>26 (6.5)</td>
<td>7 (6.9)</td>
</tr>
<tr>
<td>White</td>
<td>355 (89.0)</td>
<td>87 (86.1)</td>
</tr>
<tr>
<td>Other</td>
<td>4 (1.0)</td>
<td>0</td>
</tr>
<tr>
<td>Reasons for suspected preeclampsia — no. (%)¶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New-onset hypertension</td>
<td>109 (27.3)</td>
<td>43 (42.6)‖</td>
</tr>
<tr>
<td>Exacerbation of preexisting hypertension</td>
<td>57 (14.3)</td>
<td>18 (17.8)</td>
</tr>
<tr>
<td>New-onset proteinuria</td>
<td>144 (36.1)</td>
<td>50 (49.5)***</td>
</tr>
<tr>
<td>Exacerbation of preexisting proteinuria</td>
<td>6 (1.5)</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Other</td>
<td>304 (76.2)</td>
<td>80 (79.2)</td>
</tr>
<tr>
<td>Epigastric pain</td>
<td>31 (7.8)</td>
<td>7 (6.9)</td>
</tr>
<tr>
<td>Headache</td>
<td>105 (26.3)</td>
<td>35 (34.7)</td>
</tr>
<tr>
<td>Excessive edema</td>
<td>33 (8.3)</td>
<td>12 (11.9)</td>
</tr>
<tr>
<td>Visual disturbances</td>
<td>38 (9.5)</td>
<td>9 (8.9)</td>
</tr>
</tbody>
</table>
RATION OF sFlt-1 TO PlGF IN SUSPECTED PREECLAMPSIA

Fetal adverse outcomes were perinatal or fetal death, delivery at a gestational age of less than 34 weeks, intrauterine growth restriction, placental abruption, the respiratory distress syndrome, necrotizing enterocolitis, and intraventricular hemorrhage.

ASSESSMENT OF SERUM MARKERS

Serum samples (≥2 ml), collected according to a standard operating procedure, were analyzed retrospectively at an independent laboratory (Kreiskliniken Altoetting–Burghausen, Zentral-labor, Altoetting, Germany). Maternal serum levels of sFlt-1 and PlGF (with both levels measured in picograms per milliliter) were determined by means of the fully automated Elecsys assays for sFlt-1 and PlGF on an electrochemiluminescence immunoassay platform (cobas e analyzers, Roche Diagnostics) and were used to calculate the sFlt-1:PlGF ratio. The within-run coefficient of variation for control samples is below 4% for both assays. Between-run coefficients of variation are 2.3 to 5.6% for the Elecsys sFlt-1 assay and 2.4 to 4.6% for the Elecsys PlGF assay.

STATISTICAL ANALYSIS

We calculated that we would need to enroll approximately 1000 women (500 each for the development and validation cohorts), on the basis of previous data, expert medical opinion on requirements to achieve a positive predictive value higher than 25% and a negative predictive value higher than 96%, and an assumed preeclampsia prevalence of 15% among women with signs or symptoms of preeclampsia (see the Supplementary Appendix). For analysis of the validation cohort alone, the study had 90% power to show a negative predictive value greater than 96% (rule out of preeclampsia, eclampsia, and the HELLP syndrome within 1 week) and to show a positive predictive value greater than 25% (rule in of preeclampsia, eclampsia, or the HELLP syndrome within 4 weeks).

For the development phase of the study, prediction algorithms were derived for primary outcomes on the basis of sFlt-1:PlGF cutoff points and gestational age. Three models were applied for each prediction (1-week rule out and 4-week rule in): a model with one cutoff point (independent of gestational age); a model with two cutoff points, one for the earlier gestational phase (24 to <34 weeks) and one for the later gesta-
The New England Journal of Medicine

January 7, 2016

18

The new england journal of medicine

Ratio of sFlt-1 to PlGF

Figure 2. Ratio of sFlt-1 to PlGF for Participants with and Those without Preeclampsia in the Development and Validation Cohorts.

Preeclampsia status is shown at 1 week (Panel A), at 4 weeks (Panel B), and overall (Panel C). The bottom and top edges of each box represent the first and third quartiles, respectively, the band within the box represents the median value, the whiskers represent values that are 1.5 times the interquartile range, and the horizontal dotted line represents the cutoff point of 38 for the ratio of soluble fms-like tyrosine kinase 1 (sFlt-1) to placental growth factor (PlGF), with both levels measured in picograms per milliliter.

Results

Baseline Characteristics

Between December 2010 and January 2014, a total of 1273 women with suspected preeclampsia were enrolled (Fig. 1). The analysis included 1050 eligible participants at 30 sites who could be evaluated. Age, gestational age, body-mass index before pregnancy, and smoking status did not differ significantly between participants in whom preeclampsia developed and those in whom it did not (Table 1, and Table S4 in the Supplementary Appendix). The incidence of preeclampsia was also assessed in the development and validation cohorts combined.

We recruited women with either singleton or multiple pregnancies. However, only women with singleton pregnancies were included in the primary analysis.
Preeclampsia, the HELLP syndrome, or both according to the protocol-defined criteria was 20.2% in the development cohort and 17.8% in the validation cohort. There were no cases of eclampsia. The frequency and duration of hospitalization for mothers and neonates are reported in Table S5 in the Supplementary Appendix.

Development Phase

The median sFlt-1:PlGF ratio was elevated among participants in whom preeclampsia or the HELLP syndrome developed within 1 week (146.4) or within 4 weeks (104.8). For participants in whom these disorders did not develop, the median ratio was 6.3 at 1 week and 5.5 at 4 weeks (Fig. 2).

For the single-cutoff model, the gestational-phase model, and the gestational-week model, respectively, the AUCs were 89.2%, 90.9%, and 90.5% for 1-week rule out and 86.4%, 86.2%, and 86.2% for 4-week rule in. For the selected single-cutoff model, the median cutoff points derived from the development cohort were 38.2 (1-week rule out) and 37.5 (4-week rule in). The application of a single cutoff point of 38 for all gestational ages and for both primary prediction claims (1-week rule out and 4-week rule in) was appropriate as a simple prediction model to be validated.

Validation Phase

In the validation cohort, the median sFlt-1:PlGF ratio was 87.8 and 59.4 for participants in whom preeclampsia or the HELLP syndrome developed within 1 week and within 4 weeks, respectively, as compared with 8.0 and 6.3 among participants in whom these disorders did not develop (Fig. 2). The negative predictive value (no diagnosis of preeclampsia, eclampsia, or the HELLP syndrome within 1 week) of 38 or lower for the sFlt-1:PlGF ratio was 99.3% (95% confidence interval [CI], 97.9 to 99.9), and the positive predictive value (a diagnosis of preeclampsia, eclampsia, or the HELLP syndrome within 4 weeks) was 36.7% (95% CI, 28.4 to 45.7) (Table 2 and Fig. 3). Results for negative and positive predictive values with the use of the full data set (development and validation cohorts) are shown in Figures S1 and S2 in the Supplementary Appendix.

A post hoc analysis used the revised criteria of the American College of Obstetricians and Gynecologists for the diagnosis of preeclampsia (new-onset hypertension in the absence of new-onset proteinuria, provided one or more predefined other new-onset clinical signs or features of the syndrome were present). The results were similar to those obtained with the protocol-defined criteria for preeclampsia (Table S6 in Supplementary Appendix).

ROC curves for the individual biomarkers in the development and validation cohorts are shown in Figure S3 in the Supplementary Appendix; cutoff points were not derived. The predictive performance of sFlt-1 and PlGF, used separately, was not superior to the predictive performance of the sFlt-1:PlGF ratio. A post hoc analysis suggested that the addition of the sFlt-1:PlGF ratio to proteinuria and blood-pressure assessments improved the prediction of preeclampsia (both rule out within 1 week and rule in within 4 weeks) (Fig. S4 in the Supplementary Appendix).

Maternal and Fetal Adverse Outcomes

Two maternal adverse outcomes occurred. One participant (with an sFlt-1:PlGF ratio of 143.7) had severe preeclampsia and cerebral hemorrhage within 1 week. Another participant (with an sFlt-1:PlGF ratio of 64.4) had cerebral thrombosis within 4 weeks, despite the apparent absence of a clinical risk factor for thrombosis, but
The new england journal of medicine

preeclampsia, eclampsia, and the HELLP syndrome did not develop in this participant.

An sFlt-1:PIGF ratio of 38 or lower was predictive of the absence of fetal adverse outcomes within 1 week (negative predictive value in the development cohort, 99.5% [95% CI, 98.1 to 99.9]; negative predictive value in the validation cohort, 99.3% [95% CI, 97.9 to 99.9]); a ratio greater than 38 was predictive of the presence of these outcomes at 4 weeks (positive predictive value in the development cohort, 37.2% [95% CI, 28.6 to 46.4]; positive predictive value in the validation cohort, 47.5% [95% CI, 38.4 to 56.8]) (Fig. S5 and S6 in the Supplementary Appendix). An sFlt-1:PIGF ratio of more than 38 was also associated with a shorter time to delivery (Fig. S7 in the Supplementary Appendix). The results of post hoc analyses using a combined end point of preeclampsia, eclampsia, or the HELLP syndrome or adverse maternal or fetal outcomes are shown in Figures S8 and S9 and Table S7 in the Supplementary Appendix. Outcomes for participants with high sFlt-1:PIGF ratios in whom preeclampsia did not develop are reported in Table S8 in the Supplementary Appendix.

Discussion

The present study identified and validated a cutoff point of 38 for the sFlt-1:PIGF ratio, assessed with the use of the Elecsys sFlt-1 and PIGF immunoassays, as a useful predictor of the short-term absence of preeclampsia in women with singleton pregnancies and clinical signs that are suggestive of the disorder. In the validation cohort, the negative predictive value of a ratio at or below this cutoff point (i.e., for ruling out preeclampsia within 1 week) was 99.3% (95% CI, 97.9 to 99.9).

Preeclampsia is a major contributor to pregnancy-associated morbidity and mortality, and the management of this complex syndrome needs to be improved.8,20,32 High blood pressure and proteinuria have low predictive value for preeclampsia and its associated adverse outcomes. Angiogenic and antiangiogenic factors have been implicated in the pathophysiology of preeclampsia.8,9 In PROGNOSIS, a single cutoff point for the sFlt-1:PIGF ratio, independent of

Figure 3. Predictive Performance of the sFlt-1:PIGF Ratio for Protocol-Defined Preeclampsia in the Development and Validation Cohorts.

The predictive performance of a cutoff point of 38 for the sFlt-1:PIGF ratio is shown for ruling out preeclampsia within 1 week (Panel A) and ruling in preeclampsia within 4 weeks (Panel B). AUC denotes area under the curve.
the weeks of gestation, was validated for ruling out preeclampsia, eclampsia, and the HELLP syndrome within 1 week after assessment of the ratio. The ability to accurately rule out preeclampsia, eclampsia, and the HELLP syndrome within 1 week on the basis of the sFlt-1:PlGF ratio is likely to improve clinical decisions with regard to hospitalization versus outpatient monitoring and the intensity of outpatient monitoring. In clinical practice, a very high negative predictive value is crucial in the evaluation of a patient with suspected preeclampsia, since failure to detect imminent disease could have devastating consequences for the fetus or the mother.

The observed positive predictive value of the sFlt-1:PlGF ratio was 36.7%, which appears to represent an improvement in prediction, as compared with clinical variables in post hoc analyses. Assessment for proteinuria and measurement of blood pressure have a reported positive predictive value of only 20% in detecting preeclampsia-related adverse outcomes.32

Generally, the sFlt-1:PlGF ratio has shown better diagnostic performance than have the single biomarkers.17,18,21,33 A recent study suggested that PlGF alone predicted delivery within 14 days for women with confirmed preeclampsia before 35 weeks’ gestation.34 In the present study, the predictive performance of sFlt-1 and PlGF, evaluated individually, was not superior to the predictive performance of the sFlt-1:PlGF ratio.

An sFlt-1:PlGF ratio cutoff point of 38 or lower also had value in predicting the absence of fetal adverse outcomes within 1 week, as well as the absence of the combined end point of preeclampsia or adverse maternal or fetal outcomes within 1 week. In the two cohorts combined, comprising 1050 participants, only two maternal adverse outcomes occurred, both in women who had high sFlt-1:PlGF ratios. It was not possible to evaluate the predictive performance of the sFlt-1:PlGF ratio separately for maternal adverse outcomes, since there were only two such outcomes.

Previous studies have investigated the sFlt-1:PlGF ratio for the prediction of preeclampsia, but these studies were not prospective, included fewer participants than ours, or had different inclusion and exclusion criteria.19,20,35-38 The current study extends these previous studies by prospectively validating an sFlt-1:PlGF ratio cutoff point of 38, calculated with the use of commercially available and fully automated immunoassays, for the prediction of preeclampsia in the short term.

Our study has limitations. The data were validated with the use of the Elecsys immunoassays, and the optimal cutoff point for the ratio may differ when other assays are used. In addition, PROGNOSIS was an observational study. Data from randomized trials are needed to establish whether use of this ratio in clinical practice, as compared with the current standard of care, could reduce unnecessary hospitalizations and costs, with improved or similar results with respect to fetal and maternal adverse outcomes. In conclusion, this study shows that a cutoff point of 38 for the sFlt-1:PlGF ratio is useful for predicting the short-term absence of preeclampsia in women in whom the disorder is suspected clinically.

Supported by Roche Diagnostics.

Dr. Zeisler reports receiving lecture fees from Ferring and Roche Diagnostics and travel support from Ferring; Dr. Llurba reports receiving fees from Roche Diagnostics for lectures and serving on advisory boards; Drs. Vatish and Brennecke report receiving consulting fees from Roche Diagnostics; Dr. Stepan reports receiving consulting and lecture fees from Roche Diagnostics; Ms. Allegranza, Mr. Dilba, and Drs. Schoedl and Hund report being employees of Roche Diagnostics; Drs. Schoedl and Hund report holding stock in Roche and having a pending patent related to the sFlt-1:PlGF or endoglin:PlGF ratio to rule out onset of preeclampsia in pregnant women within a certain time period (PCT/EP2013/063115); Dr. Hund reports holding pending patents related to the dynamic of sFlt-1 or endoglin:PlGF ratio as an indicator for imminent preeclampsia or the HELLP syndrome or both (PCT/EP2012/072157) and the prediction of postpartum HELLP syndrome, postpartum eclampsia, or post partum preeclampsia (PCT/EP2015/01457); and Dr. Verlohren reports receiving consulting fees from Roche Diagnostics, Thermo Fisher, Ferring, and Novartis, lecture fees from Roche Diagnostics and Thermo Fisher, and grant support from Novartis. No other potential conflict of interest relevant to this article was reported.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

We thank all the women who participated in the study; the recruitment officers, midwives, and midwifery staff who supported the study (listed in the Supplementary Appendix); the investigators at the study sites (listed in the Supplementary Appendix); Wolfgang Hirschner, Christine Jung, Christian Schmiedel, and Monika Sonner for study-data monitoring; Wilma Verhagen-Kamerbeek for reviewing the study data and for useful discussions; and Emma McConnell (Gardiner-Caldwell Communications) for medical writing assistance.
References

