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High blood pressure is a leading heritable risk factor for stroke 
and coronary artery disease, responsible for an estimated 7.8 
million deaths and 148 million disability life years lost world-

wide in 2015 alone1. Blood pressure is determined by complex inter-
actions between life-course exposures and genetic background2–4. 
Previous genetic association studies have identified and validated 
variants at 274 loci with modest effects on population blood pres-
sure, explaining in aggregate ~ 3% of the trait variance5–12.

Here we report genome-wide discovery analyses of blood pres-
sure traits—systolic blood pressure (SBP), diastolic blood pressure 
(DBP) and pulse pressure (PP)—in people of European ancestry 
drawn from UK Biobank (UKB)13 and the International Consortium 
of Blood Pressure Genome Wide Association Studies (ICBP)11,12. 
We adopted a combination of a one- and two-stage study design to 
test common and low-frequency single nucleotide polymorphisms 
(SNPs) with minor allele frequency (MAF) ≥​ 1% associated with 
blood pressure traits (Fig. 1). In all, we studied over 1 million people 
of European descent, including replication data from the US Million 
Veteran Program (MVP, n =​ 220,520)14 and the Estonian Genome 
Centre, University of Tartu (EGCUT, n =​ 28,742) Biobank15.

UKB is a prospective cohort study of ~ 500,000 richly phe-
notyped individuals, including blood pressure measurements13, 
with genotyping by customized array and imputation from the 
Haplotype Reference Consortium (HRC) panel, yielding ~ 7 mil-
lion SNPs (imputation quality score (INFO) ≥​ 0.1 and MAF ≥​ 1%)16. 
We performed genome-wide association studies (GWAS) of blood 
pressure traits (n =​ 458,577 Europeans) under an additive genetic 
model17 (Supplementary Table  1a). Following linkage disequilib-
rium (LD) score regression18, genomic control was applied to the 
UKB data before meta-analysis (Methods).

In addition, we performed GWAS analyses for blood pressure 
traits in newly extended ICBP GWAS data comprising 77 indepen-
dent studies of up to 299,024 Europeans genotyped with various 
arrays and imputed to either the 1000 Genomes Reference Panel or 
the HRC platforms (Supplementary Table 1b). After quality control, 
we applied genomic control at the individual study level and obtained 
summary effect sizes for ~ 7 million SNPs with INFO ≥​ 0.3 and het-
erogeneity Cochran’s Q statistic19 filtered at P ≥​ 1 ×​ 10−4 (Methods). 
We then combined the UKB and ICBP GWAS results using inverse-
variance-weighted fixed-effects meta-analysis (Methods), giving a 
total discovery sample of up to 757,601 individuals20.

In our two-stage design, we attempted replication (in MVP and 
EGCUT; Supplementary Table  1c) of 1,062 SNPs at P <​ 1 ×​ 10−6 
from discovery with concordant effect direction between UKB and 
ICBP, using the sentinel SNP (that is, the SNP with smallest P-value 

at the locus) after excluding the HLA region (chr. 6: 25–34 MB) and 
all SNPs in LD (r2 ≥​ 0.1) or ±​500 kb from any previously validated 
blood pressure–associated SNPs at the 274 published loci. Our rep-
lication criteria were genome-wide significance (P <​ 5 ×​ 10−8) in the 
combined meta-analysis, P <​ 0.01 in the replication data, and con-
cordant direction of effect between discovery and replication.

We also undertook a one-stage design to reduce type II error 
from the two-stage analysis. We used P <​ 5 ×​ 10−9 as threshold 
from the discovery meta-analysis—that is, an order of magnitude 
more stringent than genome-wide significance21—and required an 
internal replication P <​ 0.01 in each of the UKB and ICBP GWAS 
analyses, with concordant direction of effect, to minimize false 
positive findings.

We carried out conditional analyses using GCTA, a tool for 
genome-wide complex trait analysis22. We then explored putative 
functions of blood pressure–associated signals using a range of in 
silico resources and evaluated co-occurrence of blood pressure–
associated loci with lifestyle exposures and other complex traits 
and diseases. Finally, we developed a genetic risk score (GRS) and 
assessed impact of blood pressure–associated variants on blood 
pressure, risk of hypertension and other cardiovascular diseases and 
in other ethnicities.

Results
We present a total of 535 novel loci (Fig.  2 and Supplementary 
Fig.  1): 325 claimed from the two-stage design (Supplementary 
Tables  2a–c) and an additional 210 claimed from our one-stage 
design with internal replication (Supplementary Tables  3a–c). 
Our two-stage design uniquely identified 121 variants, while 204 
also met the one-stage criteria (Fig.  3a); many loci would not 
have been detected by either the one- or two-stage designs alone 
(Fig.  3a). For SBP, the distributions of effect sizes are similar for 
the one-stage (median =​ 0.219 mm Hg per allele; inter-quartile 
range (IQR) =​ 0.202–0.278) and two-stage loci (median =​ 0.224; 
IQR =​ 0.195–0.267) (P =​ 0.447) (Supplementary Fig. 2). Of the 210 
loci found only in the one-stage analysis, 186 were also genome-
wide significant (P <​ 5 ×​ 10−8) in the combined meta-analysis, with 
all variants except 1 having concordant direction of effect between 
discovery and replication (Supplementary Tables  3a–c); of the 
remaining 24 SNPs, 10 still had concordant direction of effect.

We find support in our data for all 274 previously published 
blood pressure loci (Supplementary Figs. 1 and 2 and Supplementary 
Table 4); >​95% of the previously reported SNPs covered within our 
data are genome-wide significant. Only 6 available SNPs did not 
reach Bonferroni significance, likely because they were originally 
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identified in non-European ancestries (for example, rs6749447, 
rs10474346, rs11564022) or from a gene–age interaction analysis 
(rs16833934). In addition, we confirmed a further 92 previously 
reported but not replicated loci (Supplementary Table 5)9; together 
with 274 previously reported loci confirmed and 535 novel loci 
identified here, there are 901 blood pressure–associated loci in total.

Novel genetic loci for blood pressure. Of the 535 independent 
novel loci, 363 SNPs were associated with one blood pressure trait, 
160 with two traits and 12 with all three (Fig. 3b and Supplementary 
Fig.  3). Using genome-wide complex trait conditional analysis, 
we further identified 163, genome-wide significant, independent 
secondary signals with MAF ≥​ 1% associated with blood pressure 
(Supplementary Table  6), of which 19 SNPs were in LD (r2 ≥​ 0.1) 
with previously reported secondary signals. This gives a total of 144 
new secondary signals; hence, we now report over 1,000 indepen-
dent blood pressure signals.

The estimated SNP-wide heritability (h2) of blood pressure 
traits in our data was 0.213, 0.212 and 0.194 for SBP, DBP and PP, 

respectively, with a gain in percentage of blood pressure variance 
explained. For example, for SBP, percentage variance explained 
increased from 2.8% for the 274 previously published loci to 5.7% 
for SNPs identified at all 901 loci (Supplementary Table 7).

Functional analyses. Our functional analysis approach is sum-
marized in Supplementary Fig. 4. First, for each of the 901 loci, we 
annotated all SNPs (based on LD r2 ≥​ 0.8) to the nearest gene within 
5 kb of a SNP, identifying 1,333 genes for novel loci and 1,272 genes 
for known loci. Then we investigated these loci for tissue enrich-
ment, DNase hypersensitivity site enrichment and pathway. At 66 of 
the 535 novel loci, we identified 97 non-synonymous SNPs, includ-
ing 8 predicted to be damaging (Supplementary Table 8).

We used chromatin interaction Hi-C data from endothelial cells 
(HUVEC)23, neural progenitor cells (NPC), mesenchymal stem cells 
(HVMSC) and tissue from the aorta (HAEC) and adrenal gland24 
to identify distal associated genes. There were 498 novel loci that 
contained a potential regulatory SNP, and in 484 of these we iden-
tified long-range interactions in at least one of the tissues or cell 
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Fig. 1 | Study design schematic for discovery and validation of loci. ICBP; International Consortium for Blood Pressure; N, sample size; QC, quality control; 
GC, genomic control; PCA, principal component analysis; GWAS, genome-wide association study; 1000G, 1000 Genomes; HRC, Haplotype Reference 
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types. We found several potential long-range target genes that did 
not overlap with the sentinel SNPs in the LD block. For example, 
the TGFB2 gene forms a 1.2-Mb regulatory loop with SNPs in the 
SLC30A10 locus, and the TGFBR1 promoter forms a 100-kb loop 
with the COL15A1 locus (Supplementary Table 8).

Our expression quantitative trait locus (eQTL) analysis identi-
fied 60 novel loci with eQTLs in arterial tissue and 20 in adrenal 
(Supplementary Table  9), substantially increasing those identified 
in our previously published GWAS on ~ 140k UKB individuals10. An 
example is SNP rs31120122, which defines an aortic eQTL affect-
ing expression of the MED8 gene within the SZT2 locus. In combi-
nation with Hi-C interaction data in HVMSC, this supports a role 
for MED8 in blood pressure regulation, possibly mediated through 
expression of smooth muscle cell differentiation. Hi-C interactions 
provide supportive evidence for involvement of a further 36 arte-
rial eGenes (genes whose expression is affected by the eQTLs) that 
are distal to their eQTLs (for example, PPHLN1, ERAP2, FLRT2, 
ACVR2A, POU4F1).

Using DeepSEA, we found 198 SNPs in 121 novel loci with 
predicted effects on transcription factor binding or on chromatin 
marks in tissues relevant for blood pressure biology, such as vascu-
lar tissue, smooth muscle and the kidney (Supplementary Table 8).

We used our genome-wide data at a false discovery rate 
(FDR) <​ 1% to robustly assess tissue enrichment of blood pressure 
loci using DEPICT and identified enrichment across 50 tissues 
and cells (Supplementary Fig. 5a and Supplementary Table 10a). 
Enrichment was greatest for the cardiovascular system, espe-
cially blood vessels (P =​ 1.5 ×​ 10−11) and the heart (P =​ 2.7 ×​ 10−5). 
Enrichment was high in adrenal tissue (P =​ 3.7 ×​ 10−4), and, for 
the first time to our knowledge, we observed high enrichment in 
adipose tissues (P =​ 9.8 ×​ 10−9) corroborated by eQTL enrichment 
analysis (P <​ 0.05) (Supplementary Fig.  6 and Supplementary 
Table  9). Evaluation of enriched mouse knockout phenotype 
terms also pointed to the importance of vascular morphology 
(P =​ 6 ×​ 10−15) and development (P =​ 2.1 ×​ 10−18) in blood pres-
sure. With addition of our novel blood pressure loci, we identified 
new findings from both the gene ontology and protein–protein 
interaction subnetwork enrichments, which highlight the trans-
forming growth factor-β​ (TGFβ​) (P =​ 2.3 ×​ 10−13) and related 
SMAD pathways (P =​ 7 ×​ 10−15) (Supplementary Fig.  5b–d and 
Supplementary Table 10b).

We used FORGE25 to investigate the regulatory regions for cell 
type specificity from DNase I hypersensitivity sites. This showed 

strongest enrichment (P <​ 0.001) in the vasculature and highly vas-
cularized tissues, as reported in previous blood pressure genetic 
studies10 (Supplementary Fig. 7).

Potential therapeutic targets. Ingenuity pathway analysis and 
upstream regulator assessment showed enrichment of canonical 
pathways implicated in cardiovascular disease, including pathways 
targeted by antihypertensive drugs (for example, nitric oxide sig-
naling), and also suggested some potential new targets, such as 
relaxin signaling. Notably, upstream regulator analysis identified 
several blood pressure therapeutic targets, such as angiotensino-
gen, calcium channels, progesterone, natriuretic peptide receptor, 
angiotensin converting enzyme, angiotensin receptors and endo-
thelin receptors (Supplementary Fig. 8).
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Fig. 3 | Venn diagrams of novel locus results. a, Comparison of one-stage 
and two-stage design analysis criteria. For all 535 novel loci, we compare 
the results according to the association criteria used for the one-stage 
and the two-stage design. 210 loci exclusively met the one-stage analysis 
criteria (P <​ 5 ×​ 10−9 in the discovery meta-analysis (n =​ 757,601), P <​ 0.01 
in UKB (n =​ 458,577), P <​ 0.01 in ICBP (n =​ 299,024) and concordant 
direction of effect between UKB and ICBP). The P-values for the discovery 
and the ICBP meta-analyses were calculated using inverse-variance fixed-
effects meta-analysis. The P-values in UKB were derived from linear mixed 
modeling using the software package BOLT-LMM17. Of the 325 novel 
replicated loci from the two-stage analysis (genome-wide significance in 
the combined meta-analysis, P <​ 0.01 in the replication meta-analysis and 
concordant direction of effect), 204 loci would also have met the one-stage 
criteria, whereas 121 were identified only by the two-stage analysis.  
b, Overlap of associations across blood pressure traits. For all 535 novel 
loci, we show the number of loci associated with each blood pressure trait. 
We present the two-stage loci first, followed by the one-stage loci.
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We developed a cumulative tally of functional evidence at each 
variant to assist in variant or gene prioritization at each locus and 
present a summary of the vascularly expressed genes contained 
within the 535 novel loci, including a review of their potential drug-
gability (Supplementary Fig. 9). The overlap between blood pres-
sure–associated genes and those associated with antihypertensive 
drug targets further demonstrates new genetic support for known 
drug mechanisms. For example, we report five novel blood pres-
sure associations with targets of five antihypertensive drug classes 
(Supplementary Table  11), including the PKD2L1, SLC12A2, 
CACNA1C, CACNB4 and CA7 loci, targeted by potassium-sparing 
diuretics (amiloride), loop diuretics (bumetanide and furosemide), 
dihydropyridine, calcium channel blockers, non-dihydropyridines 
and thiazide-like diuretics (chlortalidone), respectively. Notably, in 
all but the last case, functional variants in these genes are the best 
candidates in each locus.

Concordance of blood pressure variants and lifestyle exposures. 
We examined association of sentinel SNPs at the 901 blood pres-
sure loci with blood pressure–associated lifestyle traits14 in UKB 
using either the Stanford Global Biobank Engine (n =​ 327,302) or 
Gene Atlas (n =​ 408,455). With corrected P <​ 1 ×​ 10−6, we found 
genetic associations of blood pressure variants with daily fruit 
intake, urinary sodium and creatinine concentration, body mass 
index (BMI), weight, waist circumference, and intakes of water, 
caffeine and tea (P =​ 1.0 ×​ 10−7 to P =​ 1.3 ×​ 10−46). Specifically, 
SNP rs13107325 in SLC39A8 is a novel locus for frequency of 
drinking alcohol (P =​ 3.5 ×​ 10−15) and time spent watching tele-
vision (P =​ 2.3 ×​ 10−11), as well as being associated with BMI 
(P =​ 1.6 ×​ 10−33), weight (P =​ 8.8 ×​ 10−16) and waist circumference 
(P =​ 4.7 ×​ 10−11) (Supplementary Table 12). We used unsupervised 
hierarchical clustering for the 36 blood pressure loci that showed at 

least one association at P <​ 1 ×​ 10−6 with the lifestyle-related traits in 
UKB (Fig. 4). The heat map summarizes the locus-specific associa-
tions across traits and highlights heterogeneous effects with anthro-
pometric traits across the loci examined. For example, it shows 
clusters of associations between blood pressure–raising alleles and 
either increased or decreased adult height and weight. We note that 
some observed cross-trait associations are in opposite directions to 
those expected epidemiologically.

Association lookups with other traits and diseases. We fur-
ther evaluated cross-trait and disease associations using GWAS 
Catalog26, PhenoScanner27 and DisGeNET28,29. The GWAS Catalog 
and PhenoScanner search of published GWAS showed that 77 of 
our 535 novel loci (using sentinel SNPs or proxies with r2 ≥​ 0.8) are 
also significantly associated with other traits and diseases (Fig.  5 
and Supplementary Table  13). We identified APOE as a highly 
cross-related blood pressure locus showing associations with lipid 
levels, cardiovascular-related outcomes and Alzheimer’s disease, 
highlighting a common link between cardiovascular risk and cogni-
tive decline (Fig. 5). Other loci overlap with anthropometric traits, 
including BMI, birth weight and height (Fig. 5), and with DisGeNET 
terms related to lipid measurements, cardiovascular outcomes and 
obesity (Fig. 6).

We did lookups of our sentinel SNPs in 1H NMR lipidomics 
data on plasma (n =​ 2,022) and data from the Metabolon platform 
(n =​ 1,941) in the Airwave Study30, and used PhenoScanner to 
test SNPs against published significant (P <​ 5 ×​ 10−8) genome- vs. 
metabolome-wide associations in plasma and urine (Methods). Ten 
blood pressure SNPs showed association with lipid particle metab-
olites and a further 31 SNPs (8 also on PhenoScanner) showed  
association with metabolites on the Metabolon platform, highlight-
ing lipid pathways, amino acids (glycine, serine and glutamine), 
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tricarboxylic acid cycle intermediates (succinylcarnitine) and drug 
metabolites (Supplementary Tables 14 and 15). These findings sug-
gest a close metabolic coupling of blood pressure regulation with 
lipid and energy metabolism.

Genetic risk of increased blood pressure, hypertension and car-
diovascular disease. A weighted GRS for blood pressure across 
all 901 loci was associated with a 10.4 mm Hg higher, sex-adjusted 
mean SBP in UKB comparing the top and bottom quintiles of the 
GRS distribution (95% CI 10.2 to 10.6 mm Hg, P <​ 1 ×​ 10−300) and 
with 12.9 mm Hg difference in SBP (95% CI 12.6 to 13.1 mm Hg, 
P <​ 1 ×​ 10−300) comparing the top and bottom deciles (Fig. 7a and 
Supplementary Table  16). In addition, we observed over three-
fold sex-adjusted higher risk of hypertension (OR 3.34; 95% CI 
3.24 to 3.45; P <​ 1 ×​ 10−300) between the top and bottom deciles of 
the GRS in UKB (Fig. 7a). Sensitivity analyses in the independent 
Airwave cohort gave similar results (Supplementary Table  17). 
We also found that the GRS was associated with increased, sex-
adjusted risk of incident stroke, myocardial infarction and all inci-
dent cardiovascular outcomes, comparing top and bottom deciles 
of the GRS distribution, with odds ratios of 1.47 (95% CI 1.35 to 
1.59, P =​ 1.1 ×​ 10−20), 1.50 (95% CI 1.28 to 1.76, P =​ 8.0 ×​ 10−7) and 
1.52 (95% CI 1.26 to 1.82, P =​ 7.7 ×​ 10−6), respectively (Fig. 7b and 
Supplementary Table 16).

Extending analyses to other ancestries. We examined associations 
with blood pressure of both individual SNPs and the GRS among 
unrelated individuals of African and South Asian descent in UKB 
for the 901 known and novel loci. Compared to Europeans, 62.4%, 
62.5% and 64.8% of the variants among Africans (n =​ 7,782) and 
74.2%, 72.3% and 75% South Asians (n =​ 10,323) had concordant 
direction of effect for SBP, DBP and PP, respectively (Supplementary 
Fig.  10 and Supplementary Table  18). Pearson correlation coeffi-
cients with effect estimates in Europeans were r2 =​ 0.37 and 0.78 for 
Africans and South Asians, respectively (Supplementary Fig.  11). 
We then applied the European-derived GRS findings to unrelated 

Africans (n =​ 6,970) and South Asians (n =​ 8,827). Blood pressure 
variants in combination were associated with 6.1 mm Hg (95% 
CI 4.5 to 7.7; P =​ 4.9 ×​ 10−14) and 7.4 mm Hg (95% CI 6.0 to 8.7; 
P =​ 1.7 ×​ 10−26) higher, sex-adjusted mean SBP among Africans and 
South Asians, respectively, comparing top and bottom quintiles of 
the GRS distribution (Supplementary Table 19a,b).

Discussion
Our study of over 1 million people offers an important step forward 
in understanding the genetic architecture of blood pressure. We 
identified over 1,000 independent signals at 901 loci for blood pres-
sure traits, and the 535 novel loci more than triples the number of 
blood pressure loci and doubles the percentage variance explained, 
illustrating the benefits of large-scale biobanks. By explaining 27% 
of the estimated heritability for blood pressure, we make major 
inroads into the missing heritability influencing blood pressure in 
the population31. The novel loci open the vista of entirely new biol-
ogy and highlight gene regions in systems not previously impli-
cated in blood pressure regulation. This is particularly timely as 
global prevalence of people with SBP over 110–115 mm Hg, above 
which cardiovascular risk increases in a continuous graded man-
ner, now exceeds 3.5 billion, of whom over 1 billion are within the 
treatment range32,33.

Our functional analysis highlights the role of the vasculature and 
associated pathways in the genetics underpinning blood pressure 
traits. We show a role for several loci in the TGFβ​ pathway, including 
SMAD family genes and the TGFβ​ gene locus itself. This pathway 
affects sodium handling in the kidney and ventricular remodeling, 
while plasma levels of TGFβ​ have recently been correlated with 
hypertension (Fig. 8)34,35. The activin A receptor type 1C (ACVR1C) 
gene mediates the effects of the TGFβ​ family of signaling molecules. 
A blood pressure locus contains the bone morphogenetic protein 2 
(BMP2) gene in the TGFβ​ pathway, which prevents growth suppres-
sion in pulmonary arterial smooth muscle cells and is associated  
with pulmonary hypertension36. Another blood pressure locus 
includes the Kruppel-like family 14 (KLF14) gene of transcription 
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factors, which is induced by low levels of TGFβ​ receptor II gene 
expression and which has also been associated with type 2 diabetes, 
hypercholesterolemia and atherosclerosis37.

Our analysis shows enrichment of blood pressure gene expres-
sion in the adrenal tissue. Autonomous aldosterone production 
by the adrenal glands is thought to be responsible for 5–10% of 
all hypertension, rising to ~ 20% amongst people with resistant 
hypertension38. Some of our novel loci are linked functionally to 
aldosterone secretion39,40. For example, the CTNNB1 locus encodes 
β​-catenin, the central molecule in the canonical Wnt signaling sys-
tem, required for normal adrenocortical development41,42. Somatic 

adrenal mutations of this gene that prevent serine/threonine  
phosphorylation lead to hypertension through generation of  
aldosterone-producing adenomas43,44.

Our novel loci also include genes involved in vascular remod-
eling, such as vascular endothelial growth factor A (VEGFA), the 
product of which induces proliferation, migration of vascular 
endothelial cells and stimulates angiogenesis. Disruption of this 
gene in mice resulted in abnormal embryonic blood vessel forma-
tion, while allelic variants of this gene have been associated with 
microvascular complications of diabetes, atherosclerosis and the 
antihypertensive response to enalapril45. We previously reported a 
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fibroblast growth factor (FGF5) gene locus in association with blood 
pressure10. Here, we additionally identify a new blood pressure 
locus encoding FGF9, which is linked to enhanced angiogenesis  
and vascular smooth muscle cell differentiation by regulating 
VEGFA expression.

Several of our novel loci contain lipid-related genes, consistent 
with the observed strong associations among multiple cardio-meta-
bolic traits. For example, the apolipoprotein E gene (APOE) encodes 
the major apoprotein of the chylomicron. Recently, APOE serum 
levels have been correlated with SBP in population-based studies 
and in murine knockout models; disruption of this gene led to ath-
erosclerosis and hypertension46,47. A second novel blood pressure 
locus contains the low-density lipoprotein receptor-related protein 
4 (LRP4) gene, which may be a target for APOE and is strongly 
expressed in the heart in mice and humans. In addition, we identi-
fied a novel locus including the apolipoprotein L domain containing 
1 gene (APOLD1) that is highly expressed in the endothelium of 
developing tissues (particularly heart) during angiogenesis.

Many of our novel blood pressure loci encode proteins that may 
modulate vascular tone or signaling. For example, the locus con-
taining urotensin-2 receptor (UTS2R) gene encodes a class A rho-
dopsin family G-protein coupled-receptor that, upon activation by 
the neuropeptide urotensin II, produces profound vasoconstric-
tion. One novel locus for SBP contains the relaxin gene, encoding a 
G-protein coupled receptor, with roles in vasorelaxation and cardiac 

function; it signals by phosphatidylinositol 3-kinase (PI3K)48,49, an 
enzyme that inhibits vascular smooth muscle cell proliferation and 
neo-intimal formation50. We identify the PI3K gene here as a novel 
blood pressure locus. We also identify the novel RAMP2 locus, 
which encodes an adrenomedullin receptor51; we previously identi-
fied the adrenomedullin (ADM) gene as a blood pressure locus12. 
Adrenomedullin is known to exert differential effects on blood pres-
sure in the brain (vasopressor) and the vasculature (vasodilator). 
In addition, a locus containing Rho guanine nucleotide exchange 
factor 25 (ARHGEF25) gene generates a factor that interacts with 
Rho GTPases involved in contraction of vascular smooth muscle 
and regulation of responses to angiotensin II52.

We evaluated the 901 blood pressure loci for extant or poten-
tially druggable targets. Loci encoding MARK3, PDGFC, TRHR, 
ADORA1, GABRA2, VEGFA and PDE3A are within systems with 
existing drugs not currently linked to a known antihypertensive 
mechanism; they may offer repurposing opportunities, for exam-
ple, detection of SLC5A1 as the strongest repurposing candidate 
in a new blood pressure locus targeted by the type 2 diabetes drug 
canagliflozin. This is important as between 8–12% of patients with 
hypertension exhibit resistance or intolerance to current therapies 
and repositioning of a therapy with a known safety profile may 
reduce development costs.

This study strengthens our previously reported GRS analysis indi-
cating that all blood pressure elevating alleles combined could increase 
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SBP by 10 mm Hg or more across quintiles or deciles of the population 
distribution, substantially increasing risk of cardiovascular events10. 
We previously suggested that genotyping blood pressure elevating 
variants in the young could lead to targeted lifestyle intervention in 
early life that might attenuate the blood pressure rise at older ages10.

We identified several blood pressure–associated loci that are also 
associated with lifestyle traits, suggesting shared genetic architecture 
between blood pressure and lifestyle exposures53. We adjusted our 
blood pressure GWAS analyses for BMI to control for possible con-
founding effects, though we acknowledge the potential for collider 
bias54. Nonetheless, our findings of possible genetic overlap between 
loci associated with blood pressure and lifestyle exposures could sup-
port renewed focus on altering specific lifestyle measures known to 
affect blood pressure55.

Despite smaller sample sizes, we observed high concordance 
with direction of effects on blood pressure traits of blood pressure 
variants in Africans (>​62%) and South Asians (>​72%). The GRS 
analyses show that, in combination, blood pressure variants iden-
tified in European analyses are associated with blood pressure in 
non-European ancestries, though effect sizes were 30–40% smaller.

Our use of a two- and one-stage GWAS design illustrates the 
value of this approach to minimize the effects of stochastic varia-
tion and heterogeneity. The one-stage approach included signals 
that had independent and concordant support (P <​ 0.01) from both 
UKB and ICBP, reducing the impact of winners’ curse on our find-
ings. Indeed, all but two of the 210 SNPs discovered in the one-stage 
analysis reach P <​ 5 ×​ 10−6 in either UKB or ICBP. To further mini-
mize the risk of reporting false positive loci within our one-stage 
design, we set a stringent overall discovery meta-analysis P-value 
threshold of P <​ 5 ×​ 10−9, an order of magnitude smaller than a 
genome-wide significance P-value, in line with thresholds recom-
mended for whole genome sequencing22. We found high concor-
dance in direction of effects between discovery data in the one-stage 
approach and the replication resources, with similar distributions of 
effect sizes for the two approaches. We note that 24 of the one-stage 
SNPs that reached P <​ 5 ×​ 10−9 in discovery failed to reach genome-
wide significance (P <​ 5 ×​ 10−8) in the combined meta-analysis of 
discovery and replication resources, and hence may still require fur-
ther validation in future, larger studies.

The new discoveries reported here more than triple the num-
ber of loci for blood pressure to a total of 901 and represent a sub-
stantial advance in understanding the genetic architecture of blood 
pressure. The identification of many novel genes across the genome 
could partly support an omnigenic model for complex traits, where 
genome-wide association of multiple interconnected pathways is 
observed. However, our strong tissue enrichment shows particu-
lar relevance to the biology of blood pressure and cardiovascular 
disease56, suggesting trait-specificity, which could argue against an 
omnigenic model. Our confirmation of the impact of these vari-
ants on blood pressure level and cardiovascular events, coupled with 
identification of shared risk variants for blood pressure and adverse 
lifestyle, could contribute to an early life precision medicine strategy 
for cardiovascular disease prevention.
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that our analysis was completed, that have been identified and validated as the 
sentinel SNP in primary analyses from previous blood pressure genetic association 
studies. These 357 published SNPs correspond to 274 distinct loci, according to 
locus definition of (i) SNPs within ±​ 500 kb distance of each other and (ii) SNPs in 
LD, using a threshold of r2 ≥​ 0.1, calculated with PLINK (v2.0). We then augment 
this list to all SNPs present within our data, which are contained within these 274 
published blood pressure loci; i.e., all SNPs that are located ±​ 500 kb from each 
of the 357 published SNPs and/or in LD with any of the 357 previously validated 
SNPs (r2 ≥​ 0.1).

Identification of novel signals using two-stage and one-stage study designs. 
To identify novel signals of association with blood pressure, two complementary 
study designs (which we term here “two-stage design” and “one-stage design”) were 
implemented in order to maximize the available data and minimize reporting of 
false positive associations.

Overview of two-stage design. All of the following criteria had to be satisfied for a 
signal to be reported as a novel signal of association with blood pressure using our 
two-stage design:

	1.	 The sentinel SNP shows significance (P <​ 1 ×​ 10−6) in the discovery meta-
analysis of UKB and ICBP, with concordant direction of effect between UKB 
and ICBP.

	2.	 The sentinel SNP is genome-wide significant (P <​ 5 ×​ 10−8) in the combined 
meta-analysis of discovery and replication (MVP and EGCUT) (replication, 
described below).

	3.	 The sentinel SNP shows support (P <​ 0.01) in the replication meta-analysis of 
MVP and EGCUT alone (Supplementary Note 1).

	4.	 The sentinel SNP has concordant direction of effect between the discovery 
and the replication meta-analyses.

	5.	 The sentinel SNP must not be located within any of the 274 previously 
reported loci described above.

The primary replicated trait was then defined as the blood pressure trait with 
the most significant association from the combined meta-analysis of discovery 
and replication (in the case where a SNP was replicated for more than one blood 
pressure trait).

Selection of variants from the discovery meta-analysis. We considered for follow-
up SNPs in loci non-overlapping with previously reported loci according to 
both an LD threshold at r2 of 0.1 and a 1-Mb interval region, as calculated by 
PLINK64. We obtained a list of such SNPs with P <​ 1 ×​ 10−6 for any of the three 
blood pressure traits that also had concordant direction of effect between UKB 
vs. ICBP (Supplementary Table 21). By ranking the SNPs by significance in order 
of minimum P-value across all blood pressure traits, we performed an iterative 
algorithm to determine the number of novel signals (Supplementary Note 1) and 
identify the sentinel (most significant) SNP per locus.

Replication analysis. We considered SNPs with MAF ≥​1% for independent 
replication in MVP (max n =​ 220,520)14 and in EGCUT Biobank (n =​ 28,742)15 
(Supplementary Note 1). This provides a total of n =​ 249,262 independent samples 
for individuals of European descent available for replication. Additional information 
on the analyses of the two replication datasets is provided in the Supplementary 
Note 1 and Supplementary Table 1c. The two datasets were then combined using 
fixed-effects inverse-variance-weighted meta-analysis, and summary results for all 
traits were obtained for the replication meta-analysis dataset.

Combined meta-analysis of discovery and replication meta-analyses. The meta-
analyses were performed within METAL software63 using fixed-effects inverse-
variance-weighted meta-analysis (Supplementary Note 1). The variants from the 
discovery GWAS that required proxies for replication are shown in Supplementary 
Table 22. The combined meta-analysis of both the discovery data (n =​ 757,601) and 
replication meta-analysis (max n =​ 249,262) provided a maximum sample size of 
n =​ 1,006,863.

Overview of one-stage design. Variants that were looked up but did not replicate 
according to the two-stage criteria were considered in a one-stage design. All of the 
following criteria had to be satisfied for a signal to be reported as a novel signal of 
association with blood pressure using our one-stage criteria:

	1.	 The sentinel SNP has P <​ 5 ×​ 10−9 in the discovery (UKB +​ ICBP) meta-analy-
sis.

	2.	 The sentinel SNP shows support (P <​ 0.01) in the UKB GWAS alone.
	3.	 The sentinel SNP shows support (P <​ 0.01) in the ICBP GWAS alone.
	4.	 The sentinel SNP has concordant direction of effect between UKB and ICBP 

datasets.
	5.	 The sentinel SNP must not be located within any of the 274 previously re-

ported loci described above (Supplementary Table 4) or the recently reported 
non-replicated loci from Hoffman et al.9 (Supplementary Table 23).

We selected the one-stage P-value threshold to be an order of magnitude more 
stringent than a genome-wide significance P-value so as to ensure robust results 

Methods
UK Biobank (UKB) data. We performed a genome-wide association study (GWAS) 
analysis in 458,577 UKB participants13 (Supplementary Note 1). These consist 
of 408,951 individuals from UKB genotyped at 825,927 variants with a custom 
Affymetrix UK Biobank Axiom Array chip and 49,626 individuals genotyped at 
807,411 variants with a custom Affymetrix UK BiLEVE Axiom Array chip from the 
UK BiLEVE study57, which is a subset of UKB. SNPs were imputed centrally by UKB 
using a reference panel that merged the UK10K and 1000 Genomes Phase 3 panel as 
well as the Haplotype Reference Consortium (HRC) panel58. For the current analysis, 
only SNPs imputed from the HRC panel were considered.

UKB phenotypic data. Following quality control (QC) (Supplementary Note 1), 
we restricted our data to a subset of post-QC individuals of European ancestry 
combining information from self-reported and genetic data (Supplementary  
Note 1), resulting in a maximum of n =​ 458,577 individuals (Fig. 1 and 
Supplementary Fig. 12).

Three blood pressure traits were analyzed: systolic blood pressure (SBP), 
diastolic blood pressure (DBP) and pulse pressure (PP; the difference between 
SBP and DBP). We calculated the mean SBP and DBP values from two automated 
(n =​ 418,755) or two manual (n =​ 25,888) blood pressure measurements. For 
individuals with one manual and one automated blood pressure measurement 
(n =​ 13,521), we used the mean of these two values. For individuals with only one 
available blood pressure measurement (n =​ 413), we used this single value. After 
calculating blood pressure values, we adjusted for medication use by adding 15 
and 10 mm Hg to SBP and DBP, respectively, for individuals reported to be taking 
blood pressure–lowering medication (n =​ 94,289)59. Descriptive summary statistics 
are shown in Supplementary Table 1a.

UKB analysis models. For the UKB GWAS, we performed linear mixed model 
(LMM) association testing under an additive genetic model of the three 
(untransformed) continuous, medication-adjusted blood pressure traits (SBP, 
DBP, PP) for all measured and imputed genetic variants in dosage format using 
the BOLT-LMM (v2.3) software17. We also calculated the estimated SNP-wide 
heritability (h2) in our data. Within the association analysis, we adjust for the 
following covariates: sex, age, age2, BMI and a binary indicator variable for UKB vs. 
UK BiLEVE to account for the different genotyping chips. The analysis of all HRC-
imputed SNPs was restricted to variants with MAF ≥​1% and INFO >​ 0.1.

Genomic inflation and confounding. We applied the univariate LD score regression 
method (LDSR)18 to test for genomic inflation (expected for polygenic traits such 
as blood pressure, with large sample sizes, and especially also from analyses of such 
dense genetic data with many SNPs in high LD)60. LDSR intercepts (and standard 
errors) were 1.217 (0.018), 1.219 (0.020) and 1.185 (0.017) for SBP, DBP and PP, 
respectively, and were used to adjust the UKB GWAS results for genomic inflation, 
before the meta-analysis.

International Consortium for Blood Pressure (ICBP) GWAS. ICBP GWAS is 
an international consortium to investigate blood pressure genetics6. We combined 
previously reported post-QC GWAS data from 54 studies (n =​ 150,134)11,12,61, with 
newly available GWAS data from a further 23 independent studies (n =​ 148,890) 
using a fixed-effects inverse-variance-weighted meta-analysis. The 23 studies 
providing new data were ASCOT-SC, ASCOT-UK, BRIGHT, Dijon 3C, EPIC-
CVD, GAPP, HCS, GS:SFHS, Lifelines, JUPITER, PREVEND, TWINSUK, GWAS-
Fenland, InterAct-GWAS, OMICS-EPIC, OMICS-Fenland, UKHLS, GoDARTS-
Illumina and GoDarts-Affymetrix, NEO, MDC, SardiNIA and METSIM.

All study participants were Europeans and were imputed to either the 1000 
Genomes Project Phase 1 integrated release v.3 (March 2012) all-ancestry reference 
panel62 or the HRC panel16. The final enlarged ICBP GWAS dataset included 77 
cohorts (n =​ 299,024).

Full study names, cohort information and general study methods are included 
in Supplementary Tables 1b and 20a–c. Genomic control was applied at the study 
level. The LDSR intercepts (standard error) for the ICBP GWAS meta-analysis were 
1.089 (0.012), 1.086 (0.012) and 1.066 (0.011) for SBP, DBP and PP, respectively.

Meta-analyses of discovery datasets. We performed a fixed-effects inverse-
variance-weighted meta-analysis using METAL20,63 to obtain summary results from 
the UKB and ICBP GWAS, for up to n =​ 757,601 participants and ~ 7.1 million 
SNPs with MAF ≥​1% for variants present in both the UKB data and ICBP meta-
analysis for all three traits. The LDSR intercepts (standard error) in the discovery 
meta-analysis of UKB and ICBP were 1.156 (0.020), 1.160 (0.021) and 1.113 (0.018) 
for SBP, DBP and PP, respectively. The LDSR intercept (standard error) after the 
exclusion of all published blood pressure variants (see below) in the discovery 
meta-analysis of UKB and ICBP was 1.090 (0.018), 1.097 (0.017) and 1.064 (0.015) 
for SBP, DBP and PP, respectively, hence showing little inflation in the discovery 
GWAS after the exclusion of published loci (Supplementary Fig. 13). No further 
correction was applied to the discovery meta-analysis of UKB and ICBP GWAS.

Previously reported variants. We compiled from the peer-reviewed literature 
all 357 SNPs previously reported to be associated with blood pressure at the time 
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(MESH) terms. We used the Mouse Genome Informatics (MGI) tool to identify 
blood pressure and cardiovascular relevant mouse knockout phenotypes for all 
genes linked to blood pressure in our study. We also used IPA to identify genes that 
interact with known targets of antihypertensive drugs. Genes were also evaluated 
for evidence of small molecule druggability or known drugs based on queries of 
the Drug Gene Interaction database.

Lookups in non-European ancestries. As a secondary analysis, we looked up 
all known and novel blood pressure–associated SNPs in Africans (n =​ 7,782) and 
South Asians (n =​ 10,322) from UKB using BOLT-LMM analysis for each blood 
pressure trait within each ancestry (Supplementary Note 1).

Effects on other traits and diseases. We queried SNPs against GWAS catalog26 
and PhenoScanner27, including genetics and metabolomics databases, to investigate 
cross-trait effects, extracting all association results with genome-wide significance 
at P <​ 5 ×​ 10−8 for all SNPs in high LD (r2 ≥​ 0.8) with the 535 sentinel novel SNPs, 
to highlight the loci with strongest evidence of association with other traits. We 
further evaluated these effects using DisGeNET28,29. At the gene level, we carried 
out over-representation enrichment analysis with WebGestalt67 on the nearest 
genes to all blood pressure loci. Moreover, we tested sentinel SNPs at all published 
and novel (n =​ 901) loci for association with lifestyle-related data including food, 
water and alcohol intake; anthropomorphic traits; and urinary sodium, potassium 
and creatinine excretion using the recently developed Stanford Global Biobank 
Engine and the Gene Atlas68. Both are search engines for GWAS findings for 
multiple phenotypes in UKB. We deemed a locus significant at a Bonferroni-
corrected threshold of P <​ 1 ×​ 10−6.

Genetic risk scores and percentage of variance explained. We calculated a 
weighted genetic risk score (GRS) (Supplementary Table 24) to provide an estimate 
of the combined effect of the blood pressure–raising variants on blood pressure 
and risk of hypertension and applied this to the UKB data (Supplementary Note 1).  
Our analysis included 423,713 unrelated individuals of European ancestry, of 
whom 392,092 individuals were free of cardiovascular events at baseline.

We assessed the association of the continuous GRS variable on blood pressure 
and with the risk of hypertension, with and without adjustment for sex. We 
then compared blood pressure levels and risk of hypertension, respectively, for 
individuals in the top vs. bottom quintiles of the GRS distribution. Similar analyses 
were performed for the top vs. bottom deciles of the GRS distribution. All analyses 
were restricted to the 392,092 unrelated individuals of European ancestry from 
UKB. As a sensitivity analysis to assess for evidence of bias in the UKB results, we 
also carried out similar analyses in Airwave, an independent cohort of n =​ 14,004 
unrelated participants of European descent30 (Supplementary Note 1).

We calculated the association of the GRS with cardiovascular disease in 
unrelated participants in UKB data on the basis of self-reported medical history 
and linkage to hospitalization and mortality data (Supplementary Table 25). We 
use logistic regression with binary outcome variables for composite incident 
cardiovascular disease (Supplementary Note 1), incident myocardial infarction and 
incident stroke (using the algorithmic UKB definitions) and GRS as explanatory 
variable (with and without sex adjustment).

We also assessed the association of this GRS with blood pressure in unrelated 
Africans (n =​ 6,970) and South Asians (n =​ 8,827) from the UKB to see whether 
blood pressure–associated SNPs identified from GWAS predominantly in 
Europeans are also associated with blood pressure in populations of non-
European ancestry.

We calculated the percentage of variance in blood pressure explained by genetic 
variants using the independent Airwave cohort (n =​ 14,004) (Supplementary Note 1).  
We considered three different levels of the GRS: (i) all pairwise-independent, 
LD-filtered (r2 <​ 0.1) published SNPs within the known loci; (ii) all known SNPs 
and sentinel SNPs at novel loci; and (iii) all independent signals at all 901 known 
and novel loci including the 163 secondary SNPs.

Ethics statement. The UKB study has approval from the North West Multi-Centre 
Research Ethics Committee. Any participants from UKB who withdrew consent 
have been removed from our analysis. Each cohort within the ICBP meta-analysis, 
as well as our independent replication cohorts of MVP and EGCUT, had ethical 
approval locally. More information on the participating cohorts is available in 
the Supplementary Note 2.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
The genetic and phenotypic UKB data are available upon application to the UK 
Biobank (https://www.ukbiobank.ac.uk). ICBP summary data can be accessed 
through request to the ICBP steering committee. Contact the corresponding 
authors to apply for access to the data. The UKB +​ ICBP summary GWAS discovery 
data can be accessed by request to the corresponding authors and will be available 
via LDHub (http://ldsc.broadinstitute.org/ldhub/). All replication data generated 
during this study are included in the published article. For example, association 

and to minimize false positive findings. The threshold of P <​ 5 ×​ 10−9 has been 
proposed as a more conservative statistical significance threshold, for example, for 
whole-genome sequencing-based studies21.

Selection of variants from the meta-analysis of UKB and ICBP was performed 
as described above for the two-stage design.

Conditional analysis. We performed conditional analyses using the GWAS 
discovery meta-analysis data in order to identify any independent secondary 
signals in addition to the sentinel SNPs at the 901 loci. We used two different 
methodological approaches, each using the genome-wide complex traits 
analysis (GCTA) software22: (i) full genome-wide conditional analysis with joint 
multivariate analysis and stepwise model selection across all three blood pressure 
traits, and (ii) locus-specific conditional analysis for the primary blood pressure 
trait conditioning on the sentinel SNPs within each locus (Supplementary Note 1).  
For robustness, secondary signals are only reported if obtained from both 
approaches. All secondary signals with MAF ≥​1% were selected at genome-wide 
significance level and confirmed to be pairwise-LD-independent (r2 <​ 0.1), as well 
as not being in LD with any of the published or sentinel SNPs at any of the 901 
blood pressure–associated loci (r2 <​ 0.1). In all cases, the UKB data was used as 
the reference genetic data for LD calculation, restricted to individuals of European 
ancestry only.

Variant-level functional analyses. We used an integrative bioinformatics approach 
to collate functional annotation at both the variant level (for each sentinel SNP 
within all blood pressure loci) and the gene level (using SNPs in LD r2 ≥​ 0.8 with 
the sentinel SNPs). At the variant level, we use Variant Effect Predictor (VEP) to 
obtain comprehensive characterization of variants, including consequence (for 
example, downstream or noncoding transcript exon), information on nearest 
genomic features and, where applicable, amino acid substitution functional impact, 
based on SIFT and PolyPhen. The biomaRt R package is used to further annotate 
the nearest genes.

We evaluated all SNPs in LD (r2 ≥​ 0.8) with our novel sentinel SNPs for 
evidence of mediation of expression quantitative trait loci (eQTL) in all 44 tissues 
using the Genotype-Tissue Expression (GTEx) database, to highlight specific 
tissue types that show eQTLs for a larger than expected proportion of novel loci. 
We further sought to identify novel loci with the strongest evidence of eQTL 
associations in arterial tissue in particular. A locus is annotated with a given 
eGene only if the most significant eQTL SNP for the given eGene is in high LD 
(r2 ≥​ 0.8) with the sentinel SNP, suggesting that the eQTL signal colocalizes with 
the sentinel SNP.

We annotated nearest genes, eGenes (genes whose expression is affected by 
eQTLs) and Hi-C interactors with HUVEC, HVMSC and HAEC expression from 
the Fantom5 project. Genes that had higher than median expression levels in the 
given cell types were indicated as expressed.

To identify SNPs in the novel loci that have a noncoding functional effect 
(influence binding of transcription factors or RNA polymerase, or influence DNase 
hypersensitivity sites or histone modifications), we used DeepSEA, a deep learning 
algorithm, which learned the binding and modification patterns of ~ 900 cell–
factor combinations65. A change of >​0.1 in the binding score predicted by DeepSEA 
for the reference and alternative alleles was used as cut-off to find alleles with 
noncoding functional effect (Supplementary Note 1).

We identified potential target genes of regulatory SNPs using long-range 
chromatin interaction (Hi-C) data from HUVECs23, aorta, adrenal glands, neural 
progenitors and mesenchymal stem cells, which are tissues and cell types that are 
considered relevant for regulating blood pressure24. We find the most significant 
promoter interactions for all potential regulatory SNPs (RegulomeDB score ≤​ 5) 
in LD (r2 ≥​ 0.8) with our novel sentinel SNPs and published SNPs, and choose the 
interactors with the SNPs of highest regulatory potential to annotate the loci.

We then performed overall enrichment testing across all loci. First, we 
used DEPICT66 (Data-driven Expression Prioritized Integration for Complex 
Traits) to identify tissues and cells that are highly expressed at genes within the 
blood pressure loci (Supplementary Note 1). Second, we used DEPICT to test 
for enrichment in gene sets associated with biological annotations (manually 
curated and molecular pathways, phenotype data from mouse knockout studies) 
(Supplementary Note 1). We report significant enrichments with a false discovery 
rate <​ 0.01. The variants tested were (i) the 357 published blood pressure–
associated SNPs at the time of analysis and (ii) a set including all (published and 
novel) variants (with novel SNPs filtered by highest significance, P <​ 1 ×​ 10−12).

Furthermore, to investigate cell type specific enrichment within DNase I sites, 
we used FORGE, which tests for enrichment of SNPs within DNase I sites in 123 
cell types from the Epigenomics Roadmap Project and ENCODE25 (Supplementary 
Note 1). Two analyses were compared (i) using published SNPs only and (ii) using  
sentinel SNPs at all 901 loci, in order to evaluate the overall tissue specific 
enrichment of blood pressure–associated variants.

Gene-level functional analyses. At the gene level, we used Ingenuity Pathway 
Analysis (IPA) software (IPA, QIAGEN Redwood City) to review genes with prior 
links to blood pressure, based on annotation with the “Disorder of Blood Pressure,” 
“Endothelial Development” and “Vascular Disease” Medline Subject Heading 
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    Experimental design
1.   Sample size

Describe how sample size was determined. Of the total ~500,000 subjects from UK Biobank, we analysed 458,577 subjects 
which passed QC of the genetic data, were of European ancestry, and met our 
phenotypic data QC requirements for availability of blood pressure data and 
covariates. 
To maximize sample size in the discovery, we recruited an additional 148,890 
samples from 23 new cohorts, in addition to the 150,134 samples already existing 
from the 54 cohorts within the published ICBP-1000G project, giving a total sample 
size of 299,024 in the ICBP meta-analysis. 
Hence a total discovery sample size of N=757,601. 
Our combined meta-analysis sample size was N=1,006,863 after combining with 
the data from the replication cohorts (N=220,520 from MVP and N=28,742 from 
EGCUT).  

2.   Data exclusions

Describe any data exclusions. Within UK Biobank, we excluded samples according to both genetic data quality 
control (QC) and phenotypic data QC. From genetic data QC, we excluded 968 
subjects listed as QC outliers for heterozygosity or missingness within the centrally 
provided UK Biobank sample QC files, and 378 individuals with sex discordance 
between the phentotypic and genetically inferred sex. We also restricted to 
subjects of European ancestry, according to both self-reported ethnicity status and 
ancestry clustering using PCA data. For phenotypic QC, we excluded any subjects 
with no BP measurements, missing BMI covariate data, pregnant (N=372) and 
those individuals who had withdrawn consent (N=36). 
 
Similar sample QC was performed at study level within each of the ICBP and 
replication cohorts.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

Novel loci identified from our 2-stage approach were robustly replicated using 
independent replication datasets. Novel loci identified from our 1-stage approach 
met our criteria for internal replication by showing significant support within each 
of the UKB and ICBP GWAS datasets separately.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

N/A for GWAS

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

N/A for GWAS 
(Note data collection of UK Biobank was done centrally, not performed by us)

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

For the Primary GWAS analysis, BOLT-LMM software v2.3 was used for running an 
association analysis using linear mixed modelling; then METAL software was used 
for all meta-analyses with a fixed effects inverse variance weighted meta-analysis 
approach. 
We used R software for any general statistical analyses, for secondary analyses 
(e.g. variance explained analyses, risk score analyses) and for producing plots in the 
figures. 
We used PLINK software for LD calculations of variants. 
For the bioinformatics analyses, specific software was used for each different 
analysis. Each method and the software used is described in the Online Methods, 
the Supplementary  Methods and also summarised in Supplementary Figure 3. For 
example, the Variant Effect Predictor (VEP) tool is used for variant annotation; 
DEPICT software is used for enrichment testing, etc.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

N/A (not labwork) 

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

N/A
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10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. N/A

b.  Describe the method of cell line authentication used. N/A

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

N/A

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

N/A

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

N/A

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Summary descriptives of UKB, ICBP and MVP/EGCUT individuals are provided in 
Sup Tables 1a, 1b and 1c, respectively, showing: blood pressure measurements as 
the phenotype; age, sex and BMI values as covariates; hypertension status and the 
use of BP-lowering medication.


	Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits

	Results

	Novel genetic loci for blood pressure. 
	Functional analyses. 
	Potential therapeutic targets. 
	Concordance of blood pressure variants and lifestyle exposures. 
	Association lookups with other traits and diseases. 
	Genetic risk of increased blood pressure, hypertension and cardiovascular disease. 
	Extending analyses to other ancestries. 

	Discussion

	URLs. 

	Online content

	Acknowledgements

	Fig. 1 Study design schematic for discovery and validation of loci.
	Fig. 2 Manhattan plot showing the minimum P-value for the association across all blood pressure traits in the discovery stage excluding known and previously reported variants.
	Fig. 3 Venn diagrams of novel locus results.
	Fig. 4 Association of blood pressure loci with lifestyle traits.
	Fig. 5 Association of blood pressure loci with other traits and diseases.
	Fig. 6 Association of blood pressure loci with other traits and diseases.
	Fig. 7 Relationship of deciles of the genetic risk score (GRS) based on all 901 loci with blood pressure, risk of hypertension and cardiovascular disease in UKB.
	Fig. 8 Known and novel blood pressure associations in the TGFβ signaling pathway.

	Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits

	Results

	Novel genetic loci for blood pressure. 
	Functional analyses. 
	Potential therapeutic targets. 
	Concordance of blood pressure variants and lifestyle exposures. 
	Association lookups with other traits and diseases. 
	Genetic risk of increased blood pressure, hypertension and cardiovascular disease. 
	Extending analyses to other ancestries. 

	Discussion

	URLs. 

	Online content

	Acknowledgements

	Fig. 1 Study design schematic for discovery and validation of loci.
	Fig. 2 Manhattan plot showing the minimum P-value for the association across all blood pressure traits in the discovery stage excluding known and previously reported variants.
	Fig. 3 Venn diagrams of novel locus results.
	Fig. 4 Association of blood pressure loci with lifestyle traits.
	Fig. 5 Association of blood pressure loci with other traits and diseases.
	Fig. 6 Association of blood pressure loci with other traits and diseases.
	Fig. 7 Relationship of deciles of the genetic risk score (GRS) based on all 901 loci with blood pressure, risk of hypertension and cardiovascular disease in UKB.
	Fig. 8 Known and novel blood pressure associations in the TGFβ signaling pathway.

	Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits

	Results

	Novel genetic loci for blood pressure. 
	Functional analyses. 
	Potential therapeutic targets. 
	Concordance of blood pressure variants and lifestyle exposures. 
	Association lookups with other traits and diseases. 
	Genetic risk of increased blood pressure, hypertension and cardiovascular disease. 
	Extending analyses to other ancestries. 

	Discussion

	URLs. 

	Online content

	Acknowledgements

	Fig. 1 Study design schematic for discovery and validation of loci.
	Fig. 2 Manhattan plot showing the minimum P-value for the association across all blood pressure traits in the discovery stage excluding known and previously reported variants.
	Fig. 3 Venn diagrams of novel locus results.
	Fig. 4 Association of blood pressure loci with lifestyle traits.
	Fig. 5 Association of blood pressure loci with other traits and diseases.
	Fig. 6 Association of blood pressure loci with other traits and diseases.
	Fig. 7 Relationship of deciles of the genetic risk score (GRS) based on all 901 loci with blood pressure, risk of hypertension and cardiovascular disease in UKB.
	Fig. 8 Known and novel blood pressure associations in the TGFβ signaling pathway.

	Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits

	Results

	Novel genetic loci for blood pressure. 
	Functional analyses. 
	Potential therapeutic targets. 
	Concordance of blood pressure variants and lifestyle exposures. 
	Association lookups with other traits and diseases. 
	Genetic risk of increased blood pressure, hypertension and cardiovascular disease. 
	Extending analyses to other ancestries. 

	Discussion

	URLs. 

	Online content

	Acknowledgements

	Fig. 1 Study design schematic for discovery and validation of loci.
	Fig. 2 Manhattan plot showing the minimum P-value for the association across all blood pressure traits in the discovery stage excluding known and previously reported variants.
	Fig. 3 Venn diagrams of novel locus results.
	Fig. 4 Association of blood pressure loci with lifestyle traits.
	Fig. 5 Association of blood pressure loci with other traits and diseases.
	Fig. 6 Association of blood pressure loci with other traits and diseases.
	Fig. 7 Relationship of deciles of the genetic risk score (GRS) based on all 901 loci with blood pressure, risk of hypertension and cardiovascular disease in UKB.
	Fig. 8 Known and novel blood pressure associations in the TGFβ signaling pathway.




